How Are Optical Semiconductors Fabricated?

Fabrication of optical semiconductors, much like other types of semiconductor products, follows a well defined manufacturing flow.
In broad terms. this begins with specialized wafers onto which the devices are patterned.
The finished wafers (examples in the image above) are tested, cut into individual chips (“die” or “dice”) which are then assembled and packaged into the final product. These undergo additional inspection and testing before they leave the factory for customers.
Below is a more detailed description of each of the steps and processes that go into the transformation of silicon wafers to finished optical semiconductors.
Wafers to be processed
Thin films of compound semiconductors are deposited or epitaxially grown on a substrate made of semiconductor materials or insulator like GaAs, InP, GaP, Sapphire, or SiC, and optical and functional devices are created on these substrates.
The substrate thickness is 0.25-1.0mm with a diameter of 2 to 5 inches (50 to 100mm), and the film is usually grown to a thickness of about 0.05-0.2mm. The substrate shape is usually round and so is called a wafer.
Front-end, back-end, and inspection processes
Once the wafers are prepared, a multi-step sequence is carried out to create the desired semiconductor devices. In general, optical semiconductor fabrication is grouped into two processes: the front-end process and the back-end process. In the front-end process, wafers are engineered, and in the back-end process, they are separated into individual elements or chips, and finally all the qualified chips are assembled into packages.
In the testing process to monitor each stage of serial processes, sampling or total inspection is conducted in accordance with procedures to administrate and control the processes and quality for a ultimate guarantee of quality.
Front-end process
The front-end process refers to the formation of the light-emitting and photo-detecting elements directly on the silicon or compound semiconductor wafer and provides a process flow in the procedure below.
Design of element function and related pattern
Design the functions and structures of some elements, according to customer demands.
Design and fabrication of photo-masks
Design and fabricate a photo-mask to transfer thousands of patterns of some element onto a glass plate.
Pattern formation
Create thousands of elements on a wafer. through the processes below.
- Film deposition (Process to grow a insulating film, such as oxide or nitride, onto the wafer.)
- Photolithography (Processes composed of coating photo-resist onto a whole wafer, transferring a pattern from a photo mask, exposure, development, and so on.)
- Etching (Chemical or physical microfabrication process to selectively remove parts of a insulating thin film or the bulk of a semiconductor material after UV light illumination onto the photo resist -coated wafer.)
- Impurity diffusion (Process to diffuse some dopant of p or n type into the very high-purity semiconductor wafers and modify electrical properties, forming P/N junction on the surface.)
The abovementioned steps are repeated to fabricate elements according to the process flow chart.
Electrode formation
Make ohmic contacts with the p or n region, and, in an optical semiconductor element having polarity, the anode is the positive (+) electrode and the cathode is the negative (-) electrode.
Wafer Inspection
Electrical performance is proved on a test machine, so-called a prover. This process is also known as wafer proving or wafer sorting test. All of individual elements connected on a wafer are subjected to such an electrical test for functional imperfections and are determined as good with meeting the requested specifications.
Back-end process
The back-end process consists of 4 steps: wafer mounting, die bonding, wire bonding, and packaging.
Wafer mounting
Mount a whole wafer onto an adhesive tape and attach it onto a ring before breaking it into individual pieces.
Wafer dicing
Cut a wafer containing thousands of elements into individual pieces, each called a die.
Die bonding
Mount or fix a die into the package or some substrate; also called die attachment.
Wire bonding
Make interconnections between a die and the exterior of the package or substrate. The wire is attached at both sides by using some combination of heat, pressure, and ultrasonic energy to weld each end.
Visual inspection
Check visually die location, epoxy paste, and wiring.
Packaging
Encapsulate a die with plastic resin such as silicone or epoxy to prevent physical damage or chemical corrosion. The term of “encapsulation” is sometimes used synonymously with “packaging.”
Finished product inspection
Such optical semiconductor devices are subject to a variety of qualification test for electrical characteristics to verify whether they function properly. The proportion of optical devices found to perform properly is referred to as the yield.
Article Source: How are optical semiconductors fabricated by Kyosemi Corporation
Kyosemi Corporation
Kyosemi Corporation is a dedicated manufacturer of optical semiconductor devices as above mentioned. The company has established an integrated production line covering successively front-end to back-end processes. Front-end processes are carried out mainly at the Eniwa Plant in Eniwa City, Hokkaido, Japan. Back-end processes are continuously carried out for mass production at the Eniwa Plant, but some of them are transferred for further cost reduction and mass production to the Kamisunagawa Plant, in Kamisunagawa-cho, Sorachi-gun, Hokkaido, Japan. Both plants are located at Northern Part of Japan.
***
(Image Credit – Bing Images )
If you found this article interesting and informative, please be sure to sign up for our weekly e-newsletter as well as daily email / RSS Feeds at SourceTech411 .
Comments are closed.